| 借鉴/启示/前瞻/趋势 | 演讲全文 | 著名签名档 | 思考平台 | 全排行榜 | 求同存异 | 现象/性质/特征/效应 | 名言名句 | 打破惯例/改变认识/观念更新 |
您当前的位置:首页 > 启迪思维 > 思考平台

现代控制理论(modern control theory )

时间:2011-03-10 12:28:06  来源:  作者:

建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。
 

 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。

现代控制理论学科内容
  现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。

  线性系统理论 它是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。

  非线性系统理论 非线性系统的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对分析某些类型的非线性系统提供了有力的理论工具。

  最优控制理论 最优控制理论是设计最优控制系统的理论基础,主要研究受控系统在指定性能指标实现最优时的控制规律及其综合方法。在最优控制理论中,用于综合最优控制系统的主要方法有极大值原理和动态规划。最优控制理论的研究范围正在不断扩大,诸如大系统的最优控制、分布参数系统的最优控制等。

  随机控制理论 随机控制理论的目标是解决随机控制系统的分析和综合问题。维纳滤波理论和卡尔曼-布什滤波理论是随机控制理论的基础之一。随机控制理论的一个主要组成部分是随机最优控制,这类随机控制问题的求解有赖于动态规划的概念和方法。

  适应控制理论 适应控制系统是在模仿生物适应能力的思想基础上建立的一类可自动调整本身特性的控制系统。适应控制系统的研究常可归结为如下的三个基本问题:①识别受控对象的动态特性;②在识别对象的基础上选择决策;③在决策的基础上做出反应或动作。

现代控制理论的发展[1]
  1.智能控制(Intelligent Control)

  智能控制是人工智能和自动控制的结合物,是一类无需人的干预就能够独立地驱动智能机器,实现其目标的自动控制。智能控制的注意力并不放在对数学公式的表达、计算和处理上,而放在对任务和模型的描述,符号和环境的识别以及知识库和推理机的设计开发上。智能控制用于生产过程,让计算机系统模仿专家或熟练操作人员的经验,建立起以知识为基础的广义模型,采用符号信息处理、启发式程序设计、知识表示和自学习、推理与决策等智能化技术,对外界环境和系统过程进行理解、判断、预测和规划,使被控对象按一定要求达到预定的目的。

  智能控制的理论基础是人工智能,控制论,运筹学和系统学等学科的交叉,它的主要特点是:

  (1)同时具有以知识表示的非数学广义模型和以数学模型表示的混合控制过程;

  (2)智能控制的核心在高层控制,即组织级,它的主要任务在于对实际环境或过程进行组织;

  (3)系统获取的信息不仅是数学信息,更重要的是文字符号、图像、图形、声音等各种信息。

  智能控制正处于发展过程中,还存在许多有待研究的问题:

  (1)探讨新的智能控制理论;

  (2)采用语音控制;

  (3)提高系统的学习能力和自主能力;

  (4)利用现有的非线性技术分析闭环系统的特性;

  (5)智能控制的实现问题。

  2.非线性控制(Nonlinear Control)

  非线性控制是复杂控制理论中一个重要的基本问题,也是一个难点课题,它的发展几乎与线性系统平行[2][3]。非线性系统的发展,数学工具是一个相当困难的问题,泰勒级数展开对有些情况是不能适用的。古典理论中的“相平面”法只适用于二阶系统,适用于含有一个非线性元件的高阶系统的“描述函数”法也是一种近似方法。由于非线性系统的研究缺乏系统的、一般性的理论及方法,于是综合方法得到较大的发展,主要有:

(1)李雅普诺夫方法:它是迄今为止最完善、最一般的非线性方法,但是由于它的一般性,在用来分析稳定性或用来镇定综合时都欠缺构造性。

来顶一下
返回首页
返回首页
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
推荐资讯
相关文章
栏目更新
栏目热门