给我留言 | 加入收藏 | 设为首页 | 会员中心 | 我要投稿 | RSS
| 全民阅读 | 推荐影音 | 推荐站点 | 网站导航 | 基金奖项 | 智囊智库 | 赛事集锦 | 为/问什么呢 | 太有才啦 | 献言/呼吁/告诫 |
您当前的位置:首页 > 精彩推荐 > 为/问什么呢

你知道一句话的意思吗?

时间:2014-05-13 17:50:16  来源:  作者:

 

译者按:本文来自《The Semantics-Pragmatics Boundary in Philosophy》中的《Assertion》一章。鉴于本文谈论的内容对于普通读者而言并不是非常熟悉,所以我将采取一种全新的方式。我会摘取某些关键段落直接翻译,也会在中间穿插一些议论,让文章变得活泼起来。
在日常生活中,我们总是能理解别人对我们所说的某句话的意思。然而有些情况下却并非如此。假设你是一个宅男,你好不容易追到一个女朋友,当她说“我肚子疼”的时候,你建议她“喝热水”,结果招致了她怒气冲冲的反问:“你让我喝热水有几个意思?”这个时候你不得不承认,一句话可能有好几个意思。
那么,哲学家是怎么看待一句话有好几个意思这个问题的呢?我们就来看看Robert Stalnaker是怎么说的吧!
A proposition-the content of an assertion or belief-is a representation of the world as being certain way. But for any given representation of the world as being a certain way, there will be a set of all the possible states of the world which accord with the representaion-which ARE the way. So any proposition determines a set of possible worlds.
一个命题——一项宣言或者一个信念的内容——是对世界的某种特定表象方式。但是对于任何特定的表象方式来说,会有一系列与表象相一致的可能的世界。这个表象方式是如何的,可能的世界就是如何的。因而任何命题都决定了一系列的可能的世界。 
这句话看起来还有点抽象,是不是?简单地说,一个女孩子说“我不跟你好了”,说明有两种可能。其一是她不会跟你好的。其二是她准备跟你好。当然后面一种可能性大些。如果她是以准备和你好的态度来说这句话的,那么她在可能世界中就打算和你好。
然而,如果一句话有无限多的意思,我们就无法领会任何语言了。对于哲学家来说,这也不利于他们建立思维模型。因而有些时候需要用某种方式来限制意思的数量。
Supposing for convenience of exposition that there is just a small finite number of possible states of the world, we might represent a proposition by enumerating the truth-values that it has in the different possible worlds, as in the following matrix:
为了论述的方便,我们假设只有少量的可能世界,并列举出一个命题在不同的可能世界中的真值条件,如下面的矩阵所示:

i, j and k the possible worlds-the different possible sets of facts that determine the truth-value of the proposition.
i、j、k都是可能世界——代表了由不同命题所决定的真值条件。
其实很简单,对吗?这位哲学家举了一个例子,让我们能够更直观地体验到当一句话出现好几个意思的时候,究竟发生了什么。
Let me give a simple example: I said You are a fool to O'Leary. O'Leary is a fool, so what I said was true, although O'Leary does not think so. Now Daniels, who is no fool and who knows it, was standing near by, and he thought I was talking to him. So both O'Leary and Daniels thought I said something false: O'Leary understood what I said, but disagrees with me about the facts; Daniels, on the other hand, agrees with me about the fact(he knows that O'Leary is a fool), but misunderstood what I said. Just to fill out the example, let me add that O'Leary believes falsely that Daniels is a fool. Now compare the possible worlds, i, j and k. i is the world as it is, the world we are in. If we ignore possible worlds other than i, j and k, we can use matrix A to represent the proposition I actually expressed. But the following TOW-DEMENSIONAL matrix also represents the second way that the truth-value of my utterance is a function of the facts:
让我举个简单的例子:我对O'Leary说你是个笨蛋。O'Leary是个笨蛋,我说的是真话,尽管O'Leary本人不这么认为。现在丹尼尔,不是个笨蛋,他恰好站在一边,以为我正在对他说话,无辜躺枪。这样O'Leary和丹尼尔都觉得我说的是错的。O'Leary理解了我的话,但是不同意我真正想要表达的意思;而丹尼尔同意我真正要表达的意思(他知道O'Leary是个笨蛋),但是误会了我说的话。为了让例子更加完整,请容许我补充一个条件,就是O'Leary也觉得丹尼尔是个笨蛋。现在比较这些可能的世界,i、j还有k。i是这个世界本来的样子,就是我们所在的世界。如果我们无视除了i、j、k之外的世界,我们可以用上面的矩阵来表象我实际想要表达的命题。但是下面的二维矩阵以另外一种方式表象了我的言论:我事实上想要表达的意思的真值条件是一种语言功能。
The vertical axis represents possible worlds in their role as context-as what determines what is said. The horizontal axis represents possilbe worlds in their role as the arguments of functions which are the propositional expressed. Thus the different horizontal lines represent WHAT IS SAID in the utterance in various different possible contexts. Notice that the horizontal line following i is the same as the one following j. This represents the fact that O'Leary and I agree about what was said. Notice also that the vertical column under i was the same as the one under k. This represents the fact that Daniels and I agree about the truth-values of both the proposition I in fact expressed and the one Daniels thought I expressed.
矩阵的竖排表象的可能世界是作为语境出现的——这些语境决定了事实上我说了什么。而矩阵横排表象的可能世界是这些命题的功能。这样不同的横排表象的是在不同的语境中什么被表达了出来。注意,横排i和横排j的真假值是一致的,这意味着O'Leary和我在言说内容上达成了一致看法。再看竖排i和竖排k的真假值是一致的,这意味着丹尼尔和我关于我事实上说出的和丹尼尔认为我说出的达成了一致。
就这样,由于立场和理解的不同,对一句话产生了这么多种可能的看法,这是不是很有趣呢?那种能够把人说的话的意思置入新的上下文,从而使之产生不同含义的词汇,叫做“算子”(operator),哲学家卡普兰称之为“妖怪”(monster)。由于这个调皮的妖怪,可让哲学家们颇费了一番脑筋。
来顶一下
返回首页
返回首页
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
推荐资讯
相关文章
栏目更新
栏目热门