给我留言 | 加入收藏 | 设为首页 | 会员中心 | 我要投稿 | RSS
| 交流平台/对话载体 | 名人传记 | 品格修炼 | 多样人生 | 群体成长 | 前世今生 | 行稳致远 | 更上一层楼 |
您当前的位置:首页 > 成长轨迹 > 名人传记

数学大师--冯康院士

时间:2013-10-01 10:56:42  来源:  作者:

 实践是检验真理的唯一标准。令人欣慰的是,随着时间的推移,冯康的科学业绩愈来愈为人们所认识,其巨大的贡献在众多领域中凸现出来。
1997年春,菲尔兹奖得主、中国科学院外籍院士丘成桐教授在清华大学所作题为“中国数学发展之我见”的报告中(见中国科学院《科学发展报告1997》,亦见1998年3月11日《中国科学报》)提到,“中国近代数学能够超越西方或与之并驾齐驱的主要原因有三个,主要是讲能够在数学历史上很出名的有三个:一个是陈省身教授在示性类方面的工作,一个是华罗庚在多复变函数方面的工作,一个是冯康在有限元计算方面的工作”。
这种对冯康作为数学家(不仅是计算数学家)的高度评价,令人耳目一新。为此,许多人奔走相告产生强烈共鸣,虽则其说法很可能出乎某些人的意料之外。
随后1997年底国家自然科学一等奖授予冯康的另一项工作“哈密尔顿系统辛几何算法”,这是一项迟到的安慰奖,也是对他的科学业绩进一步的肯定。

冯康(1920年9月9日—1993年8月17日)数学家,计算机学家。浙江绍兴人。应用数学和计算数学家。中国现代计算数学研究的开拓者。
生于江苏南京,少年时代家居江苏省苏州,原籍浙江绍兴。
1926年至1937年先后在江苏省立苏州中学所属实验小学、初中部和高中部就读。1939年考入中央大学(1949年更名为南京大学)电机工程系学习,两年后转物理系,主修电机、物理、数学三系主课,1944年在重庆毕业于中央大学。1946年任教于清华大学。
1951年起在中国科学院计算技术研究所工作,其间1951至 1953年在苏联斯捷克洛夫数学研究所进修,1957年至1978年在中国科学院计算技术研究所任副研究员、研究员;1978年至1987年任中国科学院计算中心主任,1987年后任该中心名誉理事长。独立创造了有限元方法,自然归化和自然边界元方法,开辟了辛几何和辛格式研究新领域。
是第三届全国人大代表。在基础数学研究中,对拓朴群结构、广义函数理论等作出贡献。在应用数学与计算数学方面,指导解决了国民经济与国防建设中的多项难题。独立于西方创造了解决椭圆形微分方程的现代系统化的计算方法--变分差分方法,即有限元方法。
该成果1982年获国家自然科学奖二等奖。提出椭圆方程的自然积分方程、有限元边界元的自然耦合法,开拓了哈密尔登动力系统辛几何数值解法。
中国计算数学和科学工程计算学科的奠基者和学术带头人,1980年当选为中国科学院院士。
1993年8月17日逝世。


数学家 ——冯康

早在60年代,冯康在介绍自己的研究方法时就曾说过:“我的计算数学研究都不是从阅读别人的论文开始的,而是从工程或物理原理出发的。”
冯康在成功地创始了有限元方法后,提出了哈密尔顿系统的辛几何算法,又开辟了一个有广阔应用前景的全新的研究领域。他为什么要进行这一方向的研究呢?在1991年中国物理学会年会的邀请报告中,冯康提出了这样一些关于动力系统的科学问题:在遥远的未来,太阳系呈现什么景象?行星将在什么轨道上运行?地球会与其他星球相撞吗?
也许有人认为,只要利用牛顿定律,按照现有的计算方法编个程序,再应用超级计算机进行计算,经过充分长的时间,总能得到结果。但这样的计算结果可以相信吗?实际上,对这样复杂的计算,计算机或者根本得不出结果,或者得出一个完全错误的结果。即使每一步计算的误差非常小,但误差积累起来会使结果面目全非!这是计算方法问题,机器性能再好也无济于事,编程技巧再高也是无能为力的。
动力系统问题不同于椭圆边值问题,有限元方法已不能很好解决此类问题。应该用什么样的计算方法来计算动力系统问题呢?冯康在创始有限元方法的过程中已体会到,同一物理过程的各种等价的数学表述可能导致不等效的计算方法。有限元对椭圆边值问题的成功是因为选择了适当的力学体系和数学形式。


牛顿

有限元不能很好地解决动态问题则是由于拉格朗日力学体系不能很好地反映其本质特征。于是冯康又回到了物理原理。在数学物理方程中列于首位的经典力学方程,有三种等价的数学形式体系:牛顿力学体系,拉格朗日力学体系和哈密尔顿力学体系。其中哈密尔顿体系一直是物理学理论研究的出发点,它的应用涉及物理、力学和工程的众多领域。但是针对哈密尔顿体系的计算方法直至80年代初仍是空白。
为什么不能从哈密尔顿系统出发发展新的计算方法呢?于是冯康便开始这一方向的研究。他发现,惟有哈密尔顿力学体系才是可供选择的研究动态问题的最适当的力学体系。由于辛几何是哈密尔顿系统的数学基础,冯康以他特有的数学直觉抓住了设计哈密尔顿系统数值方法的突破口--辛几何方法。他组织研究队伍对哈密尔顿系统的辛几何算法进行系统的理论研究和广泛的数值实验,经过十余年坚持不懈的努力,终于取得了极其丰硕的成果。
现在已知,传统的算法除了少数例外,几乎都不是辛算法,因此不可避免地带有人为耗散性等歪曲体系特征的缺陷。而冯康等人提出的为数众多的辛算法却保持了体系结构,特别在稳定性与长期跟踪能力上具有独特的优点,已在我国的动力天文、大气海洋、分子动力学等领域的计算中得到了成功的实际应用。
深入的理论分析和大量的数值实验令人信服地表明,辛算法解决了久悬未决的动力学长期预测计算问题。这一类新算法的出现甚至已改变了某些学科方向的研究途径,也将在更多的领域得到更广泛的应用。


南京大学

1926年至1937年先后在江苏省立苏州中学所属实验小学、初中部和高中部就读。
1939年考入中央大学(1949年更名为南京大学)工学院电机工程系学习,两年后转中央大学物理系,主修电机、物理、数学三系主课,1944年毕业。

来顶一下
返回首页
返回首页
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
推荐资讯
相关文章
栏目更新
栏目热门